

VESSEL-GENERATED UNDERWATER RADIATED NOISE COMPARISON STUDY (TUGS): *EWOLF, TIOGA, AND LEADER*

MARITIME ADMINISTRATION META PROGRAM

SUMMARY BRIEFING

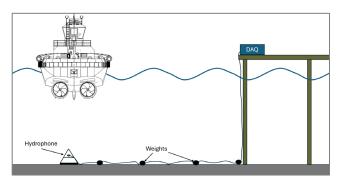
PROJECT GOALS

- Compare underwater noise generated by battery-electric and conventional diesel propulsion vessels
- Identify potential underwater noise reductions that can be linked to vessel designs with reduced greenhouse gas emissions

Measured Vessels

eWOLFZ-Drives, Battery-Electric

TiogaZ-Drives, Hard Mounted Diesel Engines

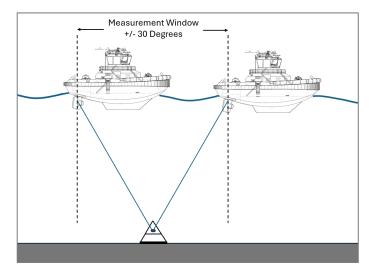


LeaderVoith, Hard Mounted Diesel Engines

MEASUREMENT CONDITIONS

- Transit Conditions
 - 10, 8, 6, 4, and 2 knots
 - Four vessel transits per condition
- Simulated Tug Assist (STA) Conditions
 - Power:100%, 80%, 60%, 40%, and 20%,
 - Based on RPM/Pitch
 - Each condition measured 3 times
- Background Noise

Deployment Arrangement Schematic



STA Test, Leader

PROCESSING OVERVIEW

For Each Measurement:

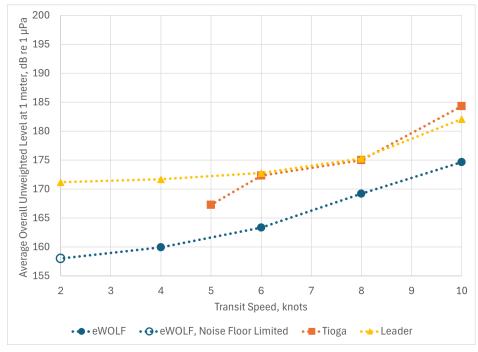
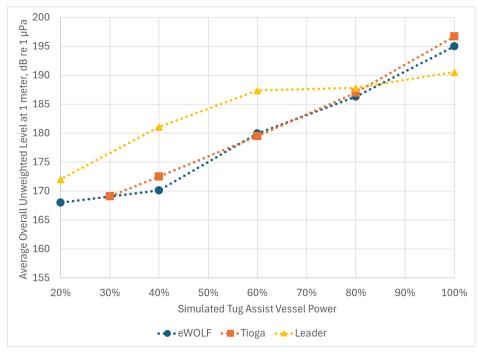

- Background noise spectrum determined
- Received level at hydrophone measured
 - Transit: Time of maximum level verified as the Closest Point of Approach (CPA)
 - STA: minimum 30 seconds of data used (vessel stationary over hydrophone)
 - Process noise spectrum at hydrophone
 - If transit, data at CPA +/- 30 degrees (per ANSI S12.64)
 - If STA, all data used
 - Data inspected for clear signs of interference; reject as necessary
 - Noise spectrum background corrected as necessary (per ANSI S12.64)
- Distance corrected 1-meter source level calculated using spherical spreading
 - 20*log₁₀(d), where d is the distance between the hydrophone and the vessel at CPA
- Data averaged over multiple runs for each measured vessel/condition

Diagram of Measurement Window

OVERALL LEVELS: TRANSIT CONDITIONS


- At all transit speeds, the eWOLF overall level is at least 6 dB lower than those of the Tioga and Leader at comparable speeds
- "Hard mounted" diesel engines of *Tioga* and *Leader* main cause of higher levels
 - Difference could potentially be reduced with noise control treatments for propulsion engines

Transit Condition, Average Overall Levels at 1-meter

OVERALL LEVELS: STA CONDITIONS

- At all STA Conditions, eWOLF noise is similar to or louder than the other vessels
- eWOLF propellers produce significant noise once cavitation is present, similar to Tioga
 - Propeller noise from the Leader is generally lower than other vessels because the Voith Schneider propulsion system cavitation is minimal
 - Engine noise controls Leader levels

STA Condition, Average Overall Levels at 1-meter

CONCLUSIONS

- Underwater noise reductions for tugs are possible by implementing battery-electric propulsion systems
 - Limited to slower speed transit and low power tug assist operating conditions when propeller cavitation is not present or is minimal
 - Impact on noise reduction will be further diminished when compared to tugs that have applied noise controls to their diesel engines
- Noise reduction at higher speeds and STA conditions requires design stage efforts to reduce cavitation
 - Conventional propeller designs with reduced cavitation may be possible if implemented as goal at the design stage
 - Alternative propulsion systems present opportunities to reduce cavitation (e.g. cycloidal systems)

Resilient Mount

Voith Schneider Propellers on Drydocked Vessel