

VESSEL-GENERATED UNDERWATER RADIATED NOISE COMPARISON STUDY (TUGS): *EWOLF, TIOGA, AND LEADER*

MARITIME ADMINISTRATION META PROGRAM

SUMMARY BRIEFING

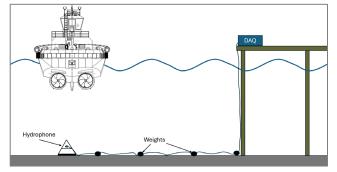
PROJECT GOALS

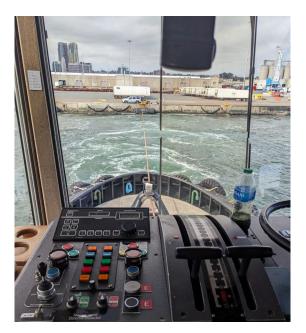
- Compare underwater noise generated by battery-electric and conventional diesel propulsion vessels
- Identify potential underwater noise reductions that can be linked to vessel designs with reduced greenhouse gas emissions

Measured Vessels

eWOLF

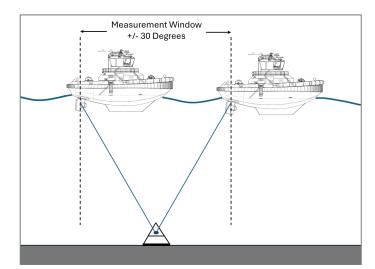
Tioga Z-Drives, Hard Mounted Diesel Engines


Leader Voith, Hard Mounted Diesel Engines


MEASUREMENT CONDITIONS

Transit Conditions

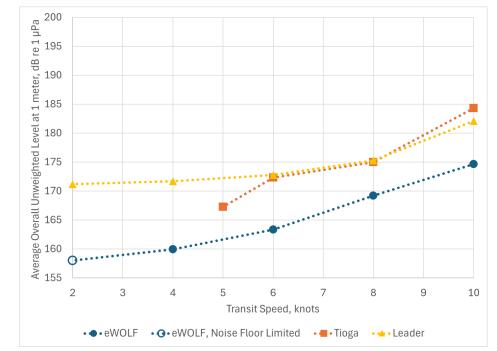
- 10, 8, 6, 4, and 2 knots
- Four vessel transits per condition
- Simulated Tug Assist (STA) Conditions
 - Power:100%, 80%, 60%, 40%, and 20%,
 - Based on RPM/Pitch
 - Each condition measured 3 times
- Background Noise


Deployment Arrangement Schematic

STA Test, Leader

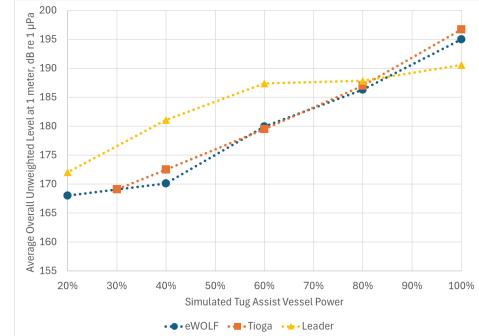
PROCESSING OVERVIEW

- For Each Measurement:
 - Background noise spectrum determined
 - Received level at hydrophone measured
 - Transit: Time of maximum level verified as the Closest Point of Approach (CPA)
 - STA: minimum 30 seconds of data used (vessel stationary over hydrophone)
 - Process noise spectrum at hydrophone
 - If transit, data at CPA +/- 30 degrees (per ANSI S12.64)
 - If STA, all data used
 - Data inspected for clear signs of interference; reject as necessary
 - Noise spectrum background corrected as necessary (per ANSI S12.64)
 - Distance corrected 1-meter source level calculated using spherical spreading
 - 20*log₁₀(d), where d is the distance between the hydrophone and the vessel at CPA
- Data averaged over multiple runs for each measured vessel/condition


Diagram of Measurement Window

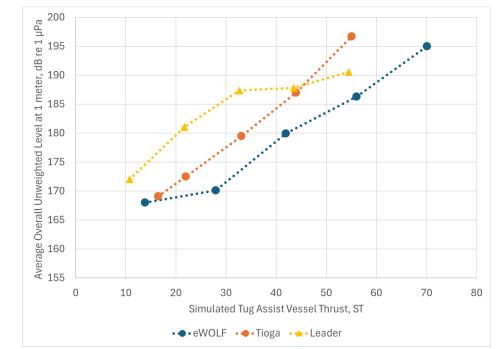
4

OVERALL LEVELS: TRANSIT CONDITIONS


- At all transit speeds, the eWOLF overall level is at least 6 dB lower than those of the *Tioga* and *Leader* at comparable speeds
- "Hard mounted" diesel engines of *Tioga* and *Leader* main cause of higher levels
 - Difference could potentially be reduced with noise control treatments for propulsion engines

Transit Condition, Average Overall Levels at 1-meter

OVERALL LEVELS: STA VS. POWER


- At all STA Conditions, eWOLF noise is similar to or louder than the other vessels
 - Comparison uses percent of installed power
- eWOLF propellers produce significant noise once cavitation is present, similar to *Tioga*
 - Propeller noise from the *Leader* is generally lower than other vessels because the Voith Schneider propulsion system cavitation is minimal
 - Engine noise controls *Leader* levels

STA Condition, Average Overall Levels at 1-meter vs. Percent Power

ALTERNATE ASSESSMENT: STA NOISE VS. THRUST

- Estimates of thrust during STA conditions were provided after finalization of the report
 - Thrust estimation based on Crowleymeasured thrust at 100% bollard pull with scaling for engine power
- eWOLF noise is at least 5 dB lower than *Tioga* and *Leader* at thrusts over 25 short tons
 - Thrust comparison has greater relevance to tug assist operations.
 - *eWOLF* quieter when performing the same work as other vessels
 - *eWOLF* uses a larger and slower turning propeller than *Tioga*
 - Tends to reduce cavitation

STA Condition, Average Overall Levels at 1-meter vs. Estimated Thrust

CONCLUSIONS

- Underwater noise reductions for tugs are possible by implementing battery-electric propulsion systems
 - Limited to slower speed transit and low power tug assist operating conditions when propeller cavitation is not present or is minimal
 - Impact on noise reduction will be further diminished when compared to tugs that have applied noise controls to their diesel engines
- Noise reduction at higher speeds and STA conditions requires design stage efforts to reduce cavitation
 - Conventional propeller designs with reduced cavitation may be possible if implemented as goal at the design stage
 - Alternative propulsion systems present opportunities to reduce cavitation (e.g. cycloidal systems)

Resilient Mount

Voith Schneider Propellers on Drydocked Vessel

